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Starting Point: Solar Wind Parameter 
Frequency Distribution Functions (V, B, N, T) 
- OMNI & Helios 1 & 2 Data



OMNI Frequency Distribution Functions -
B, V, N, T Hourly Averages - November 
1963 until December 2016
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strength, 10 km s�1 for the velocity, 1 cm�3 for the density and
10 000 K for the temperature. The frequency distributions of the
solar wind magnetic field strength, proton velocity, density and
temperature are shown in Fig. 1. The solar wind magnetic field
strength is in the range 0.4–62 nT, the velocity in the range 156–
1189 km s�1, the density in the range 0–117 cm�3, and the tem-
perature in the range 3450–6.63 ⇥ 106 K, the mean data values
are at 6.28 nT, 436 km s�1, 6.8 cm�3 and 1.05 ⇥ 105 K. These
ranges and mean values are as statistically expected from previ-
ous analyses of near 1 au solar wind data (e.g., Table 3.3 in Both-
mer & Daglis (2007, p. 39)). Much higher or lower peak values
at 1 au have been observed in extraordinary events, such as the
23 July 2012 ICME with a speed of over 2000 km s�1 and a peak
field strength of about 100 nT that was observed by STEREO A
(Russell et al. 2013) or the solar wind disappearance event ob-
served in May 1999 with density values even down to 0.2 cm�3

(Lazarus 2000).
The frequency distributions of the solar wind parameters

magnetic field strength, proton density and temperature can well
be approximated by lognormal distributions, whereas the pro-
ton velocity’s frequency has a di↵ering shape, as shown in
Veselovsky et al. (2010). We investigate how well all four so-
lar wind parameters’ frequency distributions can be represented
by lognormal functions, which we use in the process of a least
squares regression fitting. The lognormal function
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The values of xmed and xavg obtained from fitting the individual
solar wind frequency distributions are listed in Table 1.

From visual inspection, the resulting fit curves describe the
shape of the magnetic field strength, density and temperature dis-
tributions well, as can be seen in Fig. 1. However, for the velocity
the fit function appears not to be as good in describing the mea-
sured distribution’s more complex shape around its peak and in
the higher velocity range. This also can be inferred from the sum
of absolute residuals (SAR) between data and fit listed in Ta-
ble 1, being almost three times larger than those from the other
parameters.

In order to find a better fit result for the velocity distribution,
we assume that the velocity distribution can be made up of at
least two overlapping branches (McGregor et al. 2011a). There-
fore a compositional approach is chosen by combining two log-
normal functions (4), involving more fit variables:

WII(x) = c ·W1(x) + (1 � c) ·W2(x) . (5)

Fig. 2. The velocity’s frequency distribution (same as in Fig. 1) and its
compositional lognormal fit. The fit’s median and mean values and its
two fit parts are indicated as well. The inset has a zoomed-in frequency
axis.

The balancing parameter c ensures that the resulting function re-
mains normalized as it represents a probability distribution. The
fitting of WII(x) to the velocity’s frequency distribution yields the
values of the now five fit parameters (c, xmed,1, xavg,1, xmed,2 and
xavg,2) as listed in Table 1 together with the median and mean
values of the composed distribution, which can be derived via
solving
Z

WII(x) dx = 0 and
Z

x WII(x) dx = 0 . (6)

This more complex fit function is more accurate in describing
the velocity’s frequency distribution as shown in Fig. 2. Thus in
the following sections we keep the double lognormal ansatz for
all velocity frequency fits.

For the bulk of the solar wind these static lognormal func-
tions describe the parameters’ distributions well, but di↵er for
the extreme values, mainly caused by CME events. The simple
lognormal fit functions underestimate the frequency of the solar
wind parameters in their high value tails, except for the temper-
ature’s tail which is overestimated as seen in the insets of Fig. 1.
The velocity’s compositional lognormal fit only slightly overes-
timates its tail as seen in the inset of Fig. 2. The slow and fast
part contribute almost equally (c ⇡ 0.5) to the long-term velocity
distribution function.

3. Solar activity dependence of the solar wind
frequency distributions

In the next step we investigate how the long-term solar wind
distribution functions presented in the previous section depend
on general solar activity. Therefore we examine their correlation
with the sunspot number, being a commonly used long-term so-
lar activity index, and determine the time lags with the highest
correlation coe�cients.

The international sunspot number (1963–2016) is provided
by the online catalogue4 at the World Data Center – Sunspot
Index and Long-term Solar Observations (WDC-SILSO), Solar
Influences Data Analysis Center (SIDC), Royal Observatory of
Belgium (ROB).
4 http://www.sidc.be/silso/
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strength, 10 km s�1 for the velocity, 1 cm�3 for the density and
10 000 K for the temperature. The frequency distributions of the
solar wind magnetic field strength, proton velocity, density and
temperature are shown in Fig. 1. The solar wind magnetic field
strength is in the range 0.4–62 nT, the velocity in the range 156–
1189 km s�1, the density in the range 0–117 cm�3, and the tem-
perature in the range 3450–6.63 ⇥ 106 K, the mean data values
are at 6.28 nT, 436 km s�1, 6.8 cm�3 and 1.05 ⇥ 105 K. These
ranges and mean values are as statistically expected from previ-
ous analyses of near 1 au solar wind data (e.g., Table 3.3 in Both-
mer & Daglis (2007, p. 39)). Much higher or lower peak values
at 1 au have been observed in extraordinary events, such as the
23 July 2012 ICME with a speed of over 2000 km s�1 and a peak
field strength of about 100 nT that was observed by STEREO A
(Russell et al. 2013) or the solar wind disappearance event ob-
served in May 1999 with density values even down to 0.2 cm�3

(Lazarus 2000).
The frequency distributions of the solar wind parameters

magnetic field strength, proton density and temperature can well
be approximated by lognormal distributions, whereas the pro-
ton velocity’s frequency has a di↵ering shape, as shown in
Veselovsky et al. (2010). We investigate how well all four so-
lar wind parameters’ frequency distributions can be represented
by lognormal functions, which we use in the process of a least
squares regression fitting. The lognormal function
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The values of xmed and xavg obtained from fitting the individual
solar wind frequency distributions are listed in Table 1.

From visual inspection, the resulting fit curves describe the
shape of the magnetic field strength, density and temperature dis-
tributions well, as can be seen in Fig. 1. However, for the velocity
the fit function appears not to be as good in describing the mea-
sured distribution’s more complex shape around its peak and in
the higher velocity range. This also can be inferred from the sum
of absolute residuals (SAR) between data and fit listed in Ta-
ble 1, being almost three times larger than those from the other
parameters.

In order to find a better fit result for the velocity distribution,
we assume that the velocity distribution can be made up of at
least two overlapping branches (McGregor et al. 2011a). There-
fore a compositional approach is chosen by combining two log-
normal functions (4), involving more fit variables:

WII(x) = c ·W1(x) + (1 � c) ·W2(x) . (5)

Fig. 2. The velocity’s frequency distribution (same as in Fig. 1) and its
compositional lognormal fit. The fit’s median and mean values and its
two fit parts are indicated as well. The inset has a zoomed-in frequency
axis.

The balancing parameter c ensures that the resulting function re-
mains normalized as it represents a probability distribution. The
fitting of WII(x) to the velocity’s frequency distribution yields the
values of the now five fit parameters (c, xmed,1, xavg,1, xmed,2 and
xavg,2) as listed in Table 1 together with the median and mean
values of the composed distribution, which can be derived via
solving
Z

WII(x) dx = 0 and
Z

x WII(x) dx = 0 . (6)

This more complex fit function is more accurate in describing
the velocity’s frequency distribution as shown in Fig. 2. Thus in
the following sections we keep the double lognormal ansatz for
all velocity frequency fits.

For the bulk of the solar wind these static lognormal func-
tions describe the parameters’ distributions well, but di↵er for
the extreme values, mainly caused by CME events. The simple
lognormal fit functions underestimate the frequency of the solar
wind parameters in their high value tails, except for the temper-
ature’s tail which is overestimated as seen in the insets of Fig. 1.
The velocity’s compositional lognormal fit only slightly overes-
timates its tail as seen in the inset of Fig. 2. The slow and fast
part contribute almost equally (c ⇡ 0.5) to the long-term velocity
distribution function.

3. Solar activity dependence of the solar wind
frequency distributions

In the next step we investigate how the long-term solar wind
distribution functions presented in the previous section depend
on general solar activity. Therefore we examine their correlation
with the sunspot number, being a commonly used long-term so-
lar activity index, and determine the time lags with the highest
correlation coe�cients.

The international sunspot number (1963–2016) is provided
by the online catalogue4 at the World Data Center – Sunspot
Index and Long-term Solar Observations (WDC-SILSO), Solar
Influences Data Analysis Center (SIDC), Royal Observatory of
Belgium (ROB).
4 http://www.sidc.be/silso/
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strength, 10 km s�1 for the velocity, 1 cm�3 for the density and
10 000 K for the temperature. The frequency distributions of the
solar wind magnetic field strength, proton velocity, density and
temperature are shown in Fig. 1. The solar wind magnetic field
strength is in the range 0.4–62 nT, the velocity in the range 156–
1189 km s�1, the density in the range 0–117 cm�3, and the tem-
perature in the range 3450–6.63 ⇥ 106 K, the mean data values
are at 6.28 nT, 436 km s�1, 6.8 cm�3 and 1.05 ⇥ 105 K. These
ranges and mean values are as statistically expected from previ-
ous analyses of near 1 au solar wind data (e.g., Table 3.3 in Both-
mer & Daglis (2007, p. 39)). Much higher or lower peak values
at 1 au have been observed in extraordinary events, such as the
23 July 2012 ICME with a speed of over 2000 km s�1 and a peak
field strength of about 100 nT that was observed by STEREO A
(Russell et al. 2013) or the solar wind disappearance event ob-
served in May 1999 with density values even down to 0.2 cm�3

(Lazarus 2000).
The frequency distributions of the solar wind parameters

magnetic field strength, proton density and temperature can well
be approximated by lognormal distributions, whereas the pro-
ton velocity’s frequency has a di↵ering shape, as shown in
Veselovsky et al. (2010). We investigate how well all four so-
lar wind parameters’ frequency distributions can be represented
by lognormal functions, which we use in the process of a least
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The values of xmed and xavg obtained from fitting the individual
solar wind frequency distributions are listed in Table 1.

From visual inspection, the resulting fit curves describe the
shape of the magnetic field strength, density and temperature dis-
tributions well, as can be seen in Fig. 1. However, for the velocity
the fit function appears not to be as good in describing the mea-
sured distribution’s more complex shape around its peak and in
the higher velocity range. This also can be inferred from the sum
of absolute residuals (SAR) between data and fit listed in Ta-
ble 1, being almost three times larger than those from the other
parameters.

In order to find a better fit result for the velocity distribution,
we assume that the velocity distribution can be made up of at
least two overlapping branches (McGregor et al. 2011a). There-
fore a compositional approach is chosen by combining two log-
normal functions (4), involving more fit variables:

WII(x) = c ·W1(x) + (1 � c) ·W2(x) . (5)

Fig. 2. The velocity’s frequency distribution (same as in Fig. 1) and its
compositional lognormal fit. The fit’s median and mean values and its
two fit parts are indicated as well. The inset has a zoomed-in frequency
axis.

The balancing parameter c ensures that the resulting function re-
mains normalized as it represents a probability distribution. The
fitting of WII(x) to the velocity’s frequency distribution yields the
values of the now five fit parameters (c, xmed,1, xavg,1, xmed,2 and
xavg,2) as listed in Table 1 together with the median and mean
values of the composed distribution, which can be derived via
solving
Z

WII(x) dx = 0 and
Z

x WII(x) dx = 0 . (6)

This more complex fit function is more accurate in describing
the velocity’s frequency distribution as shown in Fig. 2. Thus in
the following sections we keep the double lognormal ansatz for
all velocity frequency fits.

For the bulk of the solar wind these static lognormal func-
tions describe the parameters’ distributions well, but di↵er for
the extreme values, mainly caused by CME events. The simple
lognormal fit functions underestimate the frequency of the solar
wind parameters in their high value tails, except for the temper-
ature’s tail which is overestimated as seen in the insets of Fig. 1.
The velocity’s compositional lognormal fit only slightly overes-
timates its tail as seen in the inset of Fig. 2. The slow and fast
part contribute almost equally (c ⇡ 0.5) to the long-term velocity
distribution function.

3. Solar activity dependence of the solar wind
frequency distributions

In the next step we investigate how the long-term solar wind
distribution functions presented in the previous section depend
on general solar activity. Therefore we examine their correlation
with the sunspot number, being a commonly used long-term so-
lar activity index, and determine the time lags with the highest
correlation coe�cients.

The international sunspot number (1963–2016) is provided
by the online catalogue4 at the World Data Center – Sunspot
Index and Long-term Solar Observations (WDC-SILSO), Solar
Influences Data Analysis Center (SIDC), Royal Observatory of
Belgium (ROB).
4 http://www.sidc.be/silso/

Article number, page 3 of 13



Solar Wind Parameters and SSN

 0

 5

 10

 15

M
ag

ne
tic

 fi
el

d
[n

T]

 200
 300
 400
 500
 600

Ve
lo

ci
ty

[k
m

/s
]

 0
 5

 10
 15

D
en

si
ty

[c
m

-3
]

10

20

 0Te
m

pe
ra

tu
re

[1
04  

K]

 0

 100

 200

1950 1960 1970 1980 1990 2000 2010 2020

1919 2020 2121 2222 2323 2424

SS
N

-0.8
-0.4

 0
 0.4
 0.8

-14 -12 -10 -8 -6 -4 -2 0

Correlation of solar wind parameters to lagged SSN

C
or

re
la

tio
n

co
ef

fic
ie

nt

Time lag [years]

Magnetic field
Velocity
Density
Temperature

 0

 2

 4

 6

 8

 10

 0  50  100  150  200  250

M
ag

ne
tic

 fi
el

d 
[n

T]

Yearly median
Data linear fit
Model median

 300
 350
 400
 450
 500
 550
 600

 0  50  100  150  200  250

Ve
lo

ci
ty

 [k
m

/s
]

 0

 2

 4

 6

 8

 10

 0  50  100  150  200  250

D
en

si
ty

 [c
m

-3
]

SSN

5

10

15

20

 0
 0  50  100  150  200  250

Te
m

pe
ra

tu
re

 [1
04  

K]

SSN

M. S. Venzmer and V. Bothmer: Solar wind predictions for the Parker Solar Probe orbit

Fig. 3. The solar wind parameter yearly medians derived from OMNI
data and the yearly SSN from the SILSO World Data Center (1963–
2016) with solar cycle number (top). Their correlation coe�cients with
the yearly SSN are calculated for time lags back to -15 years (bottom).

The correlation coe�cients of the solar wind parameters
with the yearly SSN shown in the bottom part of Fig. 3 are cal-
culated for time lags back to �15 years to cover a time span
longer than a solar cycle. As expected, the correlation coe�-
cients’ amplitudes of all parameters decline with increasing time
lag and show a frequency of about 11 years. The highest corre-
lation coe�cient of 0.728 to the SSN is found for the magnetic
field strength, it has no time lag. This finding is anticipated be-
cause the SSN is found to be directly proportional to the evolu-
tion of the photospheric magnetic flux (Smith & Balogh 2003).
Velocity and temperature show a lag time of 3 years with peak
correlation coe�cients of 0.453 and 0.540. The density with a
correlation coe�cient of 0.468 has a time lag of 6 years, which
is in agreement with the by Bougeret et al. (1984) reported den-
sity anticorrelation to the SSN.

To enable shifts of the solar wind frequency distributions
with the SSN, we add a linear SSN dependency to the median

xmed(ssn) = amed · ssn + bmed , (7)

using a factor to the SSN amed with a baseline bmed. We relate
the mean with a scaling factor to the median to transfer its SSN
dependency:

xavg(ssn) = (1 + aavg) · xmed(ssn) . (8)

With the implementation of these relations into the lognor-
mal function (4), the new dynamic fit function W 0(x, ssn) is
then fitted to the yearly data. The three resulting fit coe�cients
(amed, bmed and aavg) are presented in Table 2.

Fig. 5. Solar wind parameter median with respect to the lagged SSN.
The yearly data medians (+) with their weighted linear fit (solid lines)
are obtained from OMNI data. The error bars denote the SSN stan-
dard deviation and the relative weight from the yearly data coverage.
The SSN dependent median (7) is derived from the lognormal model
fit (dashed line). For the velocity the median is derived from the SSN
weighting (9) of the slow and fast model parts, whose magnitudes are
SSN independent (dotted line).

As can be seen from Fig. 4, naturally, the fit models match
with the general data trends, though single year variations are not
replicated by the model (e.g., the high velocity and temperature
values in 1974, 1994 and 2003). The comparison of this model
with the yearly data median values with respect to the lagged
SSN shows that the medians obtained from the modeling have a
quite similar slope as shown in Fig. 5.

Again, the solar wind velocity needs a special treatment be-
cause of the application of the double lognormal distribution (5).
Since it is well known that slow and fast solar wind stream oc-
currence rates follow the solar cycle we keep the two velocity
components’ positions constant and vary instead their balance
with the SSN:

c(ssn) = ca · ssn + cb . (9)

The fit result (see Table 2) yields a model in which three years
after solar cycle minimum (SSN of zero) the contribution of slow
solar wind to the overall solar wind distribution reaches a maxi-
mum value of about 64 % and decreases with increasing SSN as
shown in Fig. 6.

To investigate the amount of slow and fast wind contribu-
tions depending on solar activity, we apply the commonly used
constant velocity threshold of vth = 400 km s�1 (Schwenn 1990,
p. 144). The linear fit to the yearly data ratio and the derived
model ratio show a good agreement (see Fig. 6). Specific ve-
locity thresholds between slow and fast solar wind cannot be
directly compared with the to some degree steeper balance pa-
rameter of the double fit function used in this model. However,
it appears being likely a more realistic approach than just taking
a specific velocity threshold for the slow and fast wind, in agree-
ment with the overlapping nature of the velocity flows reported
by McGregor et al. (2011a).

4. Solar distance dependency

In order to derive heliocentric distance relationships of the bulk
solar wind distribution functions, we apply and fit a power law
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Fig. 6. Ratio of slow to fast solar wind for a by 3 years lagged SSN. The
yearly ratios (+) and their weighted linear fit (solid line) are obtained
from OMNI data with a threshold velocity of vth = 400 km s�1. The
error bars denote the SSN standard deviation and the relative weight
from the yearly data coverage. The model’s balance parameter (9) and
derived ratio (same threshold) are plotted as dashed and dotted lines.

This Helios data bias towards solar minimum is the reason why
in this study the Helios solar wind data are not used to derive
long-term frequency distributions and solar cycle dependencies
for the key solar wind parameters.

The median and mean values of the key solar wind parame-
ters for di↵erent solar distances of the Helios data are calculated
for the minimal distance resolution 0.01 au of the data set, see
Fig. 7. Assuming a radial solar wind outflow, it is expected that
the distance dependence of the solar wind parameters over the
Helios data range 0.29–0.98 au can be described through power
law scaling. Therefore we use the power law function

x(r) = d · re (10)

for the regression fit of the median and mean, with r being the
solar distance in astronomical units, d the magnitude at 1 au and
e the exponent. The fits are weighted through the di↵erent data
counts per bin. The fit coe�cients (dmed, davg, emed and eavg) are
listed in Table 3.

As anticipated, our derived exponents agree with those found
in existing studies from the Helios observations: Mariani et al.
(1978) derived the exponents for the magnetic field strength sep-
arately for the fast and the slow solar wind as Bfast / r�1.54 and
Bslow / r�1.61. The velocity exponent matches with the values
found by Schwenn (1983, 1990), who derived the distance de-
pendencies for both Helios spacecraft separately as vH1 / r0.083

and vH2 / r0.036. The calculated density exponent agrees well
with the Helios plasma density model derived by Bougeret et al.
(1984), yielding n / r�2.10. The temperature exponent is similar
to those in the studies by Hellinger et al. (2011, 2013), who also
derived the exponents separately for the fast and the slow solar
wind: Tfast / r�0.74 and Tslow / r�0.58.

Fig. 7 shows the radial dependence of the solar wind param-
eters over the distance range 0.29–0.98 au and the mean and me-
dian values and their respective power law fits. The mean and
median velocity fit exponents are very similar, which indicates
that they just as well can be kept identical so that the basic shape
of the frequency distribution does not change with distance. Con-
trary, the mean and median fits for the magnetic field strength
cross each other at 0.339 au and the mean is lower than the me-
dian at smaller distances (Table 3). Thus, below that distance the
distribution function cannot well be described anymore by a log-
normal function. The fits for the proton temperature show a sim-
ilar behavior, having an intersection at 0.082 au. Therefore the
extrapolation of the magnetic field and temperature distribution

frequencies to the PSP orbit by applying lognormal functions
is limited. To circumvent such limitations we set the exponents
emed and eavg to be identical for all four parameters. It should
be noted that this simplification leads to slightly larger modeling
errors, especially in case of the magnetic field strength.

Next we retrieve the frequency distributions of the four pa-
rameters in distance bins of 0.01 au, choosing the same resolu-
tion as for the OMNI data analyzed in Sect. 2—the distributions
are plotted in Fig. 8. For simplification, as mentioned before, we
treat the exponents of the median and mean fit functions as being
identical. Implementing the power law distance dependency (10)
into the lognormal function (4), we get the fit parameters (d0med,
d0avg and their common exponent e0). Again, we use the double
lognormal function (5) for the velocity distribution fit, resulting
in W 00II (x, r). The additional fit parameters are the balancing pa-
rameter c0 and for the second lognormal part d0med,2 and d0avg,2.
The resulting fit coe�cients for the four solar wind parameters
are presented in Table 4.

The velocity balancing parameter c0 = 0.557 is in good
agreement with the results for the SSN dependency (9), be-
cause with a mean SSN of 59 during the Helios time period,
c(59) = 0.53, as can be seen from Fig. 6.

The frequency distribution data for the four solar wind pa-
rameters with respect to the radial distance from the Sun are plot-
ted in Fig. 8, together with their power law lognormal fits and the
double lognormal fit for the velocity with their median values.
The model’s magnetic field strength is broader around values of
40 nT at the lower distance boundary than the data’s frequency
distribution implies. This behavior is expected because of the
distance independent shape approximation applied. The velocity
and temperature models’ upper values generally show a higher
abundance than the actual data, see also zoom boxes in Figs. 1
and 2. The velocity model’s with distance increasing high ve-
locity tail comes from using the same exponent for both slow
and fast components. This e↵ect is not seen in the data, more
specifically, not only the slowest wind but also the fastest wind
is expected to converge to more average speeds (Sanchez-Diaz
et al. 2016).

5. Empirical solar wind model

In order to estimate the solar wind environment for the PSP orbit,
we combine the results from the solar wind frequency distribu-
tions’ solar activity relationships and their distance dependencies
derived from the OMNI and Helios data. The result is an empir-
ical solar wind model for the inner heliosphere which will then
be extrapolated to the PSP orbit in Sect. 6.

This established solar wind model for the radial distance de-
pendence is representative for the time of the Helios observations
around the rise of solar cycle 21. The variation of yearly power
law fit exponents are shown in Fig. 9 together with the yearly
SSN for the time period 1974–1982. It can be seen that during
the Helios time period there might be some systematic variation
of the exponents with solar activity—at least for the velocity and
temperature exponents. However, for simplicity we assume, that
the distance scaling laws can be treated as time independent and
include the calculated exponents’ yearly variations �e, summa-
rized in Table 3, as relative uncertainties.

Since we neglect possible variations of the distance scaling
laws, we combine the frequency distribution’s median solar ac-
tivity dependency (7) derived for 1 au from the OMNI data with
the power law exponents (10) derived from the Helios data:

xmed(ssn, r) = (amed · ssn + bmed) · re0 . (11)
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Fig. 6. Ratio of slow to fast solar wind for a by 3 years lagged SSN. The
yearly ratios (+) and their weighted linear fit (solid line) are obtained
from OMNI data with a threshold velocity of vth = 400 km s�1. The
error bars denote the SSN standard deviation and the relative weight
from the yearly data coverage. The model’s balance parameter (9) and
derived ratio (same threshold) are plotted as dashed and dotted lines.

This Helios data bias towards solar minimum is the reason why
in this study the Helios solar wind data are not used to derive
long-term frequency distributions and solar cycle dependencies
for the key solar wind parameters.

The median and mean values of the key solar wind parame-
ters for di↵erent solar distances of the Helios data are calculated
for the minimal distance resolution 0.01 au of the data set, see
Fig. 7. Assuming a radial solar wind outflow, it is expected that
the distance dependence of the solar wind parameters over the
Helios data range 0.29–0.98 au can be described through power
law scaling. Therefore we use the power law function

x(r) = d · re (10)

for the regression fit of the median and mean, with r being the
solar distance in astronomical units, d the magnitude at 1 au and
e the exponent. The fits are weighted through the di↵erent data
counts per bin. The fit coe�cients (dmed, davg, emed and eavg) are
listed in Table 3.

As anticipated, our derived exponents agree with those found
in existing studies from the Helios observations: Mariani et al.
(1978) derived the exponents for the magnetic field strength sep-
arately for the fast and the slow solar wind as Bfast / r�1.54 and
Bslow / r�1.61. The velocity exponent matches with the values
found by Schwenn (1983, 1990), who derived the distance de-
pendencies for both Helios spacecraft separately as vH1 / r0.083

and vH2 / r0.036. The calculated density exponent agrees well
with the Helios plasma density model derived by Bougeret et al.
(1984), yielding n / r�2.10. The temperature exponent is similar
to those in the studies by Hellinger et al. (2011, 2013), who also
derived the exponents separately for the fast and the slow solar
wind: Tfast / r�0.74 and Tslow / r�0.58.

Fig. 7 shows the radial dependence of the solar wind param-
eters over the distance range 0.29–0.98 au and the mean and me-
dian values and their respective power law fits. The mean and
median velocity fit exponents are very similar, which indicates
that they just as well can be kept identical so that the basic shape
of the frequency distribution does not change with distance. Con-
trary, the mean and median fits for the magnetic field strength
cross each other at 0.339 au and the mean is lower than the me-
dian at smaller distances (Table 3). Thus, below that distance the
distribution function cannot well be described anymore by a log-
normal function. The fits for the proton temperature show a sim-
ilar behavior, having an intersection at 0.082 au. Therefore the
extrapolation of the magnetic field and temperature distribution

frequencies to the PSP orbit by applying lognormal functions
is limited. To circumvent such limitations we set the exponents
emed and eavg to be identical for all four parameters. It should
be noted that this simplification leads to slightly larger modeling
errors, especially in case of the magnetic field strength.

Next we retrieve the frequency distributions of the four pa-
rameters in distance bins of 0.01 au, choosing the same resolu-
tion as for the OMNI data analyzed in Sect. 2—the distributions
are plotted in Fig. 8. For simplification, as mentioned before, we
treat the exponents of the median and mean fit functions as being
identical. Implementing the power law distance dependency (10)
into the lognormal function (4), we get the fit parameters (d0med,
d0avg and their common exponent e0). Again, we use the double
lognormal function (5) for the velocity distribution fit, resulting
in W 00II (x, r). The additional fit parameters are the balancing pa-
rameter c0 and for the second lognormal part d0med,2 and d0avg,2.
The resulting fit coe�cients for the four solar wind parameters
are presented in Table 4.

The velocity balancing parameter c0 = 0.557 is in good
agreement with the results for the SSN dependency (9), be-
cause with a mean SSN of 59 during the Helios time period,
c(59) = 0.53, as can be seen from Fig. 6.

The frequency distribution data for the four solar wind pa-
rameters with respect to the radial distance from the Sun are plot-
ted in Fig. 8, together with their power law lognormal fits and the
double lognormal fit for the velocity with their median values.
The model’s magnetic field strength is broader around values of
40 nT at the lower distance boundary than the data’s frequency
distribution implies. This behavior is expected because of the
distance independent shape approximation applied. The velocity
and temperature models’ upper values generally show a higher
abundance than the actual data, see also zoom boxes in Figs. 1
and 2. The velocity model’s with distance increasing high ve-
locity tail comes from using the same exponent for both slow
and fast components. This e↵ect is not seen in the data, more
specifically, not only the slowest wind but also the fastest wind
is expected to converge to more average speeds (Sanchez-Diaz
et al. 2016).

5. Empirical solar wind model

In order to estimate the solar wind environment for the PSP orbit,
we combine the results from the solar wind frequency distribu-
tions’ solar activity relationships and their distance dependencies
derived from the OMNI and Helios data. The result is an empir-
ical solar wind model for the inner heliosphere which will then
be extrapolated to the PSP orbit in Sect. 6.

This established solar wind model for the radial distance de-
pendence is representative for the time of the Helios observations
around the rise of solar cycle 21. The variation of yearly power
law fit exponents are shown in Fig. 9 together with the yearly
SSN for the time period 1974–1982. It can be seen that during
the Helios time period there might be some systematic variation
of the exponents with solar activity—at least for the velocity and
temperature exponents. However, for simplicity we assume, that
the distance scaling laws can be treated as time independent and
include the calculated exponents’ yearly variations �e, summa-
rized in Table 3, as relative uncertainties.

Since we neglect possible variations of the distance scaling
laws, we combine the frequency distribution’s median solar ac-
tivity dependency (7) derived for 1 au from the OMNI data with
the power law exponents (10) derived from the Helios data:

xmed(ssn, r) = (amed · ssn + bmed) · re0 . (11)
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Summary

• The dependency of the magnetic field strength median value on solar activity and radial distance is: 
Bmed(ssn, r) = (0.0131 nT · ssn + 4.29 nT) · r -1.66

This approximation seems valid above 20 R , however near PSP’s closest perihelion the actual values might be found to be 
slightly higher. 

• The estimated magnetic field strength values for PSP’s first and closest perihelion are 87 nT and 943 nT.

• The radial dependencies of the proton velocity median values for slow and fast solar wind are: 
vslow(r)=363kms 1·r0.099

vfast(r) =483 km s · r0.099

These relations appear valid above about 20R solar distance, below they overestimate the actual solar wind velocities obtained 
from remote measurements. 

• The calculated median velocity values for PSP’s first and closest perihelion are 340 km/s and 290 km/s
• The share of their frequency distributions to the overall solar wind velocity distribution is depending on solar activity, their

balance was found to be c(ssn)=- 0.00180·ssn+0.64
At solar minimum with sunspot number around 0 the slow wind contributes about 64 % and dropping to 28 % during solar 
maximum conditions with sunspot numbers around 200

• The median proton density relation is found to be:  nmed(ssn, r) = (0.0038 cm-3 · ssn + 4.50 cm-3) · r -2.11

• This relation seems valid throughout the full PSP orbital distance range, even down to about 8 RS
• The estimated density values for PSP’s first and closest perihelion are 214 cm-3 and 2951 cm-3

• The derived correlation function for the median proton temperature is: Tmed(ssn, r) = (197 K · ssn + 57 300 K) · r 1.10

• Around PSP’s perihelion this relation seems to provide too high temperature values in comparison to coronal measurements -
The estimated temperature values for PSP’s first and closest perihelion are 503 000 K and 1 930 000 K

• The overestimation of the extrapolated velocity and temperature values at distances below 20 R indicate the 
occurrence of solar wind acceleration and heating processes, which PSP will thus be able to directly measure as 
planned.
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ABSTRACT

Context. The Parker Solar Probe (PSP) (formerly Solar Probe Plus) mission will be humanity’s first in situ exploration of the solar
corona with closest perihelia at 9.86 solar radii (R�) distance to the Sun. It will help answer hitherto unresolved questions on the
heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is
to model the solar wind environment for PSP’s unprecedented distances during its prime mission phase during the years 2018–2025.
The study is performed within the project Coronagraphic German And US Solar Probe Survey (CGAUSS) which is the German
contribution to the PSP mission as part of the Wide field Imager for Solar PRobe (WISPR).
Aims. We present an empirical solar wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-
US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of
0.29–0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar
cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar wind parameters
on solar activity and to forecast their properties for the PSP mission.
Methods. The frequency distributions for the solar wind key parameters magnetic field strength, proton velocity, density and temper-
ature are represented by lognormal functions. In addition, we consider the velocity distribution’s bi-componental shape, consisting of
a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the
frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters’ frequency
distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar wind model for the in-
ner heliosphere confined to the ecliptic region is derived, accounting for solar activity and for solar distance through adequate shifts of
the lognormal distributions. Finally, the inclusion of SSN predictions and the extrapolation to PSP’s perihelion enables us to estimate
the solar wind environment for PSP’s planned trajectory during its mission duration.
Results. The CGAUSS empirical solar wind model for PSP yields dependencies of the solar wind parameters on solar activity
and radial distance. The estimated solar wind median values for PSP’s first perihelion in 2018 at a solar distance of 0.16 au are
87 nT, 340 km s�1, 4015 cm�3 and 503 000 K. The estimates for PSP’s closest perihelia, beginning in 2024 at 0.046 au (9.86 R�),
are 943 nT, 290 km s�1, 9733 cm�3 and 1 930 000 K. Though, the modeled velocity and temperature values below about 20 R� appear
overestimated in comparison with existing observations. Thus, PSP is expected to directly measure solar wind acceleration and heating
processes below 20 R� as planned.

Key words. solar wind – sun: heliosphere – sun: corona

1. Introduction

From observations of cometary tail fluctuations Biermann
(1951) inferred the presence of a continuous flow of particles
from the Sun. With his theoretical solar wind model Parker
(1958) formulated the existence of the solar wind even before
the first satellites measured it in situ in 1959 (Gringauz et al.
1960; Neugebauer & Snyder 1966). The idea of a space mission
flying through the solar corona dates back to the founding year
of NASA in 1958 (McComas et al. 2008). Since then several
space missions have measured the solar wind in situ at a wide
range of heliocentric distances, in case of Voyager 1 as far away
as 138 au1 (July 2017), having even left the heliospause into
interstellar space at a distance of 121 au (Gurnett et al. 2013).
Until today various spacecraft have provided a wealth of solar
wind measurements near Earth’s orbit, with WIND (Lepping
et al. 1995; Ogilvie et al. 1995), ACE (Stone et al. 1998) and
1 https://voyager.jpl.nasa.gov/

DSCOVR (Burt & Smith 2012) still orbiting around the L1 point
1.5 million km ahead of Earth in the sunward direction. Addi-
tional measurements at other solar distances were provided by
planetary missions to Venus and Mercury, such as PVO (Colin
1980) or MESSENGER (Belcher et al. 1991). Ulysses was the
first probe that orbited the Sun out of the ecliptic plane and thus
could measure solar wind even at polar latitudes (McComas et al.
1998). The Sun-nearest in situ solar wind measurements to date
were obtained by the Helios mission. The in 1974 launched He-
lios 1 spacecraft reached distances of 0.31 au, Helios 2 launched
two years later and approached the Sun up to 0.29 au (Rosen-
bauer et al. 1977). The NASA Parker Solar Probe2 (PSP), for-
merly Solar Probe Plus, with a planned launch date in mid 2018,
will reach after six years in 2024 its closest perihelia at a distance
of 9.86 solar radii (R�), that is, 0.0459 au (Fox et al. 2015). This
distance will be achieved through seven Venus gravity assists

2 http://parkersolarprobe.jhuapl.edu/
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